radians

1. Solve $2\cos 2x - 5\cos x - 4 = 0$ for $0 \le x < 2\pi$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	5	В	CN	T10, T7	x = 2.419, 3.864	2010 P2 Q4
•1 •2 •3 •4 •5	ss: kr formula ic: exp ss: star pd: red pd: con only on k > 1	now to ress as c rt to solv uce to ec mplete ne wher	use c quadrat re quations solutior e cos x	loubleangleic in $\cos x$ s in $\cos x$ onlynstoinclude= k with	• ¹ $2 \times (2\cos^2 x - 1) \cdots$ • ² $4\cos^2 x - 5\cos x - 6 = 0$ • ³ $(4\cos x + 3)(\cos x - 2) =$ • ⁴ $\cos x = -\frac{3}{4}$ and $\cos x = 2$ • ⁵ 2.419, 3.864 and no solution	0 on.

- 2. The diagram shows the graph of a [SQA] cosine function from 0 to π .
 - (*a*) State the equation of the graph.
 - (b) The line with equation $y = -\sqrt{3}$ intersects this graph at point A and B.

Find the coordinates of B.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
<i>(a)</i>	1	С	NC	T4	$y = 2\cos 2x$	2002 P1 Q8
(b)	3	С	NC	Τ7	$B(\frac{7\pi}{12}, -\sqrt{3})$	
•1 •2 •3 •4	ic: inte ss: equ pd: sol radians ic: inte	erpret gra ate equa lve line erpret rea	aph al parts ar trig sult	equation in	• ¹ $2\cos 2x$ • ¹ $2\cos 2x = -\sqrt{3}$ • ² $2x = \frac{5\pi}{6}, \frac{7\pi}{6}$ • ³ $x = \frac{7\pi}{12}$	

1

[SQA] 3.

- (a) Solve $\cos 2x^{\circ} 3\cos x^{\circ} + 2 = 0$ for $0 \le x < 360$.
- (*b*) Hence solve $\cos 4x^{\circ} 3\cos 2x^{\circ} + 2 = 0$ for $0 \le x < 360$

Part	Marks	Level	Calc.	Content	Answer U2 OC	23
<i>(a)</i>	5	С	NC	T7	x = 0,60,300 2011 P1 0	Q23
(<i>b</i>)	2	А	NC	T11	x = 0, 30, 150, 180, 210, 330	
•1 •2 •3 •4 •5 •6 •7	ss: kr formula ic: exp ss: star pd: red ic: pr domain ic: inte ic: inte	now to ress as a et to solv uce to ec cocess erpret re erpret pe	use d quadra quation solution lationsh eriodicit	Houble angle atic in $\cos x^\circ$ in \cos only as in given this with (a) by	• ¹ $2\cos^2 x^\circ - 1$ • ² $2\cos^2 x^\circ - 3\cos x^\circ + 1 = 0$ • ³ $(2\cos x^\circ - 1)(\cos x^\circ - 1)$ • ⁴ $\cos x^\circ = \frac{1}{2}, 1$ • ⁵ $0, 60, 300$ • ⁶ $2x = 0$ and 60 and 300 • ⁷ $0, 30, 150, 180, 210$ and 330	

[SQA] 4. Find the values of *t*, where $0 < t < 2\pi$, for which $4 \cos \left(2t - \frac{\pi}{4}\right)$ has its maximum value.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	4	С	NC	Τ7		1989 P1 Q15
• ¹ c	$\cos\left(2t-\frac{\pi}{4}\right)$	=1				
• ² 2	$2t - \frac{\pi}{4} = 0$					
• ³ t	$=\frac{\pi}{8}$					
•4 7	<u>π, 9π</u>					

[SQA] 5. The diagram shows part of the graph of $y = a \sin 3x^\circ$ and the line with equation $y = \frac{2}{3}a$. Find the x-coordinates of A and B.

4

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	4	С	NC	T7		1999 P1 Q14
<u> </u>						

- •1 $a \sin 3x = \frac{2}{3}a$ stated or implied by •2 •2 $\sin 3x = \frac{2}{3}$ •3 3x = 41.8, 138.2 (138.2 stated or implied by 46.1 in •4) •4 13.9, 46.1
- [SQA] 6. The diagram shows the graph of a sine function from 0° to 90°.
 - (a) State the equation of the graph.
 - (b) The line with equation y = -1.5 intersects the curve at A and B.Find the coordinates of A and B.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
<i>(a)</i>	2	С	CR	T1, A7		1990 P1 Q10
<i>(b)</i>	3	С	CR	T7		

• $\sin 4x$

² (trig function)×2

•³
$$f(x) = -1.5$$

- •⁴ 57 · 1°
- •⁵ 77.9°

4

[SQA] 7. Find, correct to one decimal place, the value of *x* between 180 and 270 which satisfies the equation $3\cos(2x^\circ - 40^\circ) - 1 = 0$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3				
	5	С	CR	Τ7		1992 P1 Q5				
• ¹ co	• $\cos(2x-40)^\circ = \frac{1}{2}$									
• ² co	$cos^{-1}\frac{1}{2} = 70.53$									
• 3 2	x-40=70.	5 289.5	430.5 64	19.5						
• ⁴ x	• $x = 55.25$ 164.75 235.25 344.75									
• ⁵ x	x = 235.25									

[SQA] 8. If $f(a) = 6 \sin^2 a - \cos a$, express f(a) in the form $p \cos^2 a + q \cos a + r$.

Hence solve, correct to three decimal places, the equation $6\sin^2 a - \cos a = 5$ for $0 \le a \le \pi$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3		
	2	С	CR	Τ7		1993 P1 Q17		
	2	A/B	CR	Τ7				
• ¹ s	•1 subst. leading from $\sin^2 to \cos^2$ •2 $-6\cos^2 a - \cos a + 6 = 5$ •3 solving the quadratic							
•4 1	1.231 and 2.094							

- (a) Find the coordinates of A and B (as shown in the diagram) by solving an appropriate equation algebraically.
 (b) The points (0, 2) and (π, 0) are joined by a straight line *I*. In how many points does *I* intersect the given graph ?
 (1)
- (c) C is the point on the given graph with an x-coordinate of $\frac{\pi}{2}$. Explain whether C is above, below or on the line *l*.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
<i>(a)</i>	3	С	NC	Τ7		1993 P2 Q6
<i>(a)</i>	2	A/B	NC	Τ7		
(b)	1	С	NC	CGD		
(<i>c</i>)	3	A/B	NC	CGD		

(a)
$$\cdot^{1} 2 \sin 2x + 1 = 0$$

 $\cdot^{2} \sin 2x = -\frac{1}{2}$
 \cdot^{3} for any valid sol of equ. in form $\sin ax = -\frac{b}{c}$
 $\cdot^{4} \left(\frac{7\pi}{12}, 0\right)$
 $\cdot^{5} \left(\frac{11\pi}{12}, 0\right)$
(b) $\cdot^{6} 3$
(c) $\cdot^{7} y_{C} = 1$
 \cdot^{8} for a strategy to make a decision about C
 \cdot^{9} for making a consistent decision about C

(3)

[SQA] 10. Solve the equation $2\cos^2 x = \frac{1}{2}$, for $0 \le x \le \pi$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	3	С	NC	T7, T3		1990 P1 Q15
1 2 3	$\cos x = \pm \frac{1}{2}$ $x = \frac{\pi}{3}$ $\frac{2\pi}{3}$					

[SQA] 11. The diagram shows the graph of the function $y = a + b \sin cx$ for $0 \le x \le \pi$.

(a) Write down the values of a, b and c. (b) Find algebraically the values of x for which y = 2.5. 3 2 1 0 $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{4}$ π $\frac{3\pi}{4}$ π $\frac{3\pi}{4}$ π $\frac{3\pi}{4}$ π

Part	Marks	Level	Calc.	Content	Answer		U2 OC3
<i>(a)</i>	3	С	NC	T1			1994 P1 Q12
(b)	3	С	NC	T7, T3			
•1	<i>a</i> = 2	-4	2 + si	$n 2x = 2\frac{1}{2}$	• ⁴ 2+sin		$\sin 2x = 2\frac{1}{2}$
•2	<i>b</i> = 1	$\bullet^5 \qquad 2x = \frac{\pi}{6}, \ \frac{5\pi}{6}$			OK	• ⁵ $2x =$	$\frac{\pi}{6}, \ x=\frac{\pi}{12}$
•3	<i>c</i> = 2	•6	$\chi = \frac{\pi}{12}$	$\frac{5\pi}{12}$ (0.262, 1.309)		• $2x =$	$\frac{5\pi}{6}, x = \frac{5\pi}{12}$

[SQA] 12. The diagram shows a sketch of the graph of $y = \sin(2x - \frac{\pi}{6}), \quad 0 \le x \le \pi$, and the straight line y = 0.5. These graphs intersect at P and Q.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3				
	4	С	NC	T7, T3		1996 P1 Q12				
•1	• $\sin\left(2x-\frac{\pi}{6}\right)=0.5$ stated or implied by 2nd mark									
•2	$\bullet^2 2x - \frac{\pi}{6} = \frac{\pi}{6}$									
•3	• ³ $2x - \frac{\pi}{6} = \frac{5\pi}{6}$									
•4	$\left(\frac{\pi}{6}, 0.5\right),$	$\left(\frac{\pi}{2}, 0.5\right)$								

[SQA] 13. Solve the equation $2\sin\left(2x - \frac{\pi}{6}\right) = 1, 0 \le x < 2\pi$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	4	С	NC	T7, T3		1998 P1 Q9
.1 .2 .3 .4	$\sin\left(2x - \frac{\pi}{6}\right)$ $2x - \frac{\pi}{6} = \frac{\pi}{6}$ $x = \frac{\pi}{6}$ $x = \frac{2\pi}{6}$	$h = \frac{1}{2}$ $, \frac{5\pi}{6} (acce)$ $, \frac{\pi}{2}$ $, \frac{\pi}{2}$ $, \frac{3\pi}{2}$	zpt 30, 1	50)	Alternative for 2nd and 3rd marks • ² $2x - \frac{\pi}{6} = \frac{\pi}{6}, x = \frac{\pi}{6}$ • ³ $2x - \frac{\pi}{6} = \frac{5\pi}{6}, x = \frac{\pi}{2}$	

- [SQA] 14. Functions $f(x) = \sin x$, $g(x) = \cos x$ and $h(x) = x + \frac{\pi}{4}$ are defined on a suitable set of real numbers.
 - (*a*) Find expressions for:
 - (i) f(h(x));
 - (ii) g(h(x)).

(b) (i) Show that
$$f(h(x)) = \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x$$

(ii) Find a similar expression for g(h(x)) and hence solve the equation f(h(x)) - g(h(x)) = 1 for $0 \le x \le 2\pi$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3	
<i>(a)</i>	2	С	NC	A4	(i) $sin(x + \frac{\pi}{4})$, (ii)	2001 P1 Q7	
~ /					$\cos(x+\frac{\pi}{4})$		
(b)	5	С	NC	T8, T7	(i) proof, (ii) $x = \frac{\pi}{4}, \frac{3\pi}{4}$		
• ¹ ic: interpret composite functions • ² ic: interpret composite functions • ³ ss: expand $sin(x + \frac{\pi}{4})$ • ⁴ ic: interpret • ⁵ ic: substitute • ⁶ pd: start solving process • ⁷ pd: process					• $\sin(x + \frac{\pi}{4})$ • $\cos(x + \frac{\pi}{4})$ • $\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}$ and complete • $g(h(x)) = \frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x$ • $\left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x\right) - \left(\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x\right)$ • $\frac{1}{\sqrt{2}} \sin x$ • $\frac{\pi}{\sqrt{2}} \sin x$ • $\frac{\pi}{\sqrt{2}} \sin x$		

[END OF QUESTIONS]

2